HISTOANATOMY OF ANDROGENIC GLAND OF A BRACHYURAN CRAB, *Parasesarma plicatum* (Latrielle, 1803)

Ganapiriya, V.¹, Shyla Suganthi, A.² and Maharajan, A.³¹

¹PG and Research Department of Zoology, Khadir Mohideen College, Adirampattinam-614701, Thanjavur District, Tamil Nadu, India.
²Department of Zoology, Holy Cross College (Autonomous), Nagercoil-629004, Kanyakumari District, Tamil Nadu, India

ABSTRACT
The present study was executed on the androgenic gland of mangrove crab *Parasesarma plicatum* to study the morphology, histology and its function in male reproduction. Morphologically, the androgenic gland is attached to wall of the ejaculatory duct. The light microscopic study showed two cell types. Type 1 cells are small with large nucleus and involve in secretory activity. This suggests the function of androgenic gland in male reproduction of crabs.

Key words: Androgenic gland, Morphology, Histology, *Parasesarma plicatum*.

INTRODUCTION
The androgenic gland has been established as the endocrine gland which is responsible for the differentiation of the primary and secondary sexual characters in malacostracan crustaceans (Charniaux-Cotton, 1960 and 1964; Payen, 1973; Charniaux-Cotton and Payen, 1985; Sagi *et al.*, 1990 and 1997, Taketomi and Nishikawa, 1996; Okumura and Hara, 2004). Male morphogenesis and spermatogenic activity occur only in the presence of androgenic gland, whereas, in its absence, female morphogenesis occurs (Charniaux-Cotton and Payen, 1983 and 1985). Spermatogonial proliferation and initiation of meiosis in the testis of the brachyuran crab, *Potamon koolooensi* are suggested to be under the control of androgenic gland (Joshi and Khanna, 1982).

Most of the studies on the androgenic gland in decapods have been focused on shrimps and cray fishes. In crabs, the structure of androgenic gland was described in *Pachigrapsus crassipes* (King, 1964), *Ocypode platytauris* (Thamph and John, 1970), *C. sapidus* (Payen *et al.*, 1971), *Ranina ranina* (Minagawa *et al.*, 1994) and *Scylla paramamosain* (Liu *et al.*, 2008). Seasonal changes in androgenic gland in relation to male reproduction have been reported in the brachyuran crab *Metopograpsus messor* (*Joseph*, 2007), the crayfishes such as *Orconectes nainii* (*Carpenter* and *DeRoos*, 1970) and *Procambarus clarkii* (*Taketomi*, 1986; *Taketomi *et al.*, 1996), the freshwater prawn *Macrobrachium kiiitennis* (*Mirajkar* *et al.*, 1984), the marine shrimp *Penaeus chinensis* (*Li and Li*, 1993) and the isopod, *Armadillidium vulgare* (*Katakura*, 1984).

The releasing type of androgenic gland is holocrine (Charniaux-Cotton, 1962), and it is commonly reported that the nature of androgenic hormone in decapod crustaceans is protein or polypeptide (*King*, 1964; *Sun et al.*, 2000). The morphological and physiological effects of the androgenic gland on decapod crustaceans have always been topics of concern (*Taketomi et al.*, 1990; *Taketomi et al.*, 1996; *Fowler* and *Leonard*, 1999; *Khalaila et al.*, 1999). Although the function of the androgenic gland has been well demonstrated by such studies as those cited above, the number of studies on the structure of the androgenic gland and the nature of its secretory products in brachyuran crabs is lacking (*Awari* and *Dube*, 1999). As such, it was deemed worthwhile to determine the location and histology of the androgenic gland, and the nature of androgenic hormone in *Parasesarma plicatum*, a brachyuran crab species that is commonly seen in estuaries and mangroves. This study could also serve as a basis for future aquacultural research on brachyuran crabs.

MATERIALS AND METHODS
The brachyuran crab, *P. plicatum*, inhabits the muddy substratum of estuarine and mangrove environments and enjoys a wide range of distribution in the tropics. Adult males of carapace width 1.6 cm to 2.2 cm were collected from Manakudy estuary of Kanyakumari District, Tamil Nadu. Animals were handpicked or collected by bait. After...
examining the moult stages (Suganthi and Anilkumar, 1999), the crabs were reared in the laboratory in plastic cisterns and were fed ad lib on clam meat and (boiled) egg white. Inter-moult crabs were used for the light microscopic studies. The male reproductive system of the *P. plicatum* was dissected by cutting open the dorsal portion of the carapace. The dissection was performed under a dissection microscope in a medium of 0.9% physiological saline. For histological studies, the tissues were fixed in Bouin’s Fluid. Paraffin sections of 5-7µm thickness were stained in Harris Haematoxylin and counter stained with 1% alcoholic eosin (Humason, 1967). The stained sections were viewed and photomicrographed.

RESULTS

Morphology

The androgenic gland housed on the surface of the ejaculatory duct (ED) and appears as a strand of transparent cord tissue. This glandular structure is seen from anterior to the middle portion of the ED. (Figure 1 and 2).

Histology

This gland histologically exhibited two cell types as type 1 and type 2.

Type 1 cells

The type 1 cells are single type, irregular, slightly polygonal, measuring 8-13 µm with a spherical nucleus (2-4 µm in diameter). These cells are compactly arranged with uni or sometimes with few bi-nucleated cells (Figure 3). The nucleus is mostly centrally located and basophilic in nature.

Type 2 cells

The type 2 cells are larger than type 1, measuring 17-23µm. These cells form the bulk of the glandular cells. The cytoplasm stains lightly with haematoxylin and toluidine blue (Figure 4). The basophilic nucleus occupies central or peripheral position. Type 2 cells appear to have vacuoles in their cytoplasm. They produce and accumulate secretory product in the cytoplasm (Figure 5). Vacillations occurs in the cytoplasm was clear with the toluidine blue staining (Figure 6). The appearance of the glandular cells were found to vary depending the seasons.
Figure 1. The ejaculatory duct (ED) with androgenic gland (ANG). Figure 2. The stained androgenic gland lodged over ED. Figure 3. The histological horizontal section of ED with ANG. Figure 4. The cross section of Ejaculatory duct (ED) with androgenic gland (ANG). The gland shows type 1 and type 11 cells. Figure 5. The magnified image of ANG with two types of cells. ED exhibits columnar epithelium (EP) and muscle layer (MU). Figure 6. The androgenic gland (ANG) with secretory vesicles (SV).

DISCUSSION

The androgenic gland was first reported by Cronin (1947) and Charniaux-Cotton (1954) explained the androgenic gland in amphipods and later found in isopods and decapods (Charniaux-Cotton et al., 1966) and believed it to be related to sexual differentiation. In *P. plicatum* the androgenic gland is housed immediately exterior to the ED as in other brachyurans (Kon and Honma, 1970; Thampy and John, 1970; Joseph, 2007; Devi and Smija, 2014), whereas it is attached to the PVD in few crabs (Joshi and Khanna, 1982; Minagawa et al., 1994; Liu et al., 2008; Erkan et al., 2010). The type 1 and type 2 of androgenic gland cells of *P. plicatum* were comparable to those of *S. paramamosain* (Liu et al., 2008) and *Travancoriana schirnerae* (Devi and Smija, 2014).

The androgenic gland was composed of two cell types in *Procambarus clarkii* (Taketomi, 1986), *Eriphia verrucosa* (Erkan et al., 2010) which corroborates with our present study. On the other hand *Ocypode platytrasis* (Thampy and John, 1970) *Travancoriana schirnerae* (Devi and Smija, 2014) and *Scylla paramamosain* (Liu et al., 2008), three cell types could be distinguished in the androgenic gland and five cell types in *Orconectes nais* (Carpenter and De Roos, 1970).

Only two types of cells are identified in *E. verrucosa* (Erkan et al., 2010) which corroborates with our present results. On the contrary, three types of cells are found in *S. paramamosain* (Liu et al., 2008); *O. platytrasis* (Thampy and John, 1970); *Macrobrachium rosenbergii* (Veith and malecha, 1983) and *T. schirnerae* (Devi and Smija, 2014).

In *P. plicatum*, the androgenic gland cells are irregular or polygonal with a central nucleus; a few cells, however, exhibit bi-nucleated condition. Similar nature is being reported in *M. brachyactyla* (Simeo et al., 2009). These cells might form simple strands, as in most brachyurans, lobules as in Majoidea, or cords as in penaeids. In addition, they sometimes show anastomosis (Charniaux-Cotton and Payen, 1985); however, they all are covered with connective tissue externally. In type 2 cells in the androgenic gland in *Eriphia verrucosa*, vacuoles are mostly observed after high secretion activity during the mating season like our present study. There are significant differences in the activation and release of secretory material according to season (Carpenter and DeRoos, 1970; Liu et al., 2008). The androgenic gland of the crab *Scylla paramamosain* is largest during the major mating season (July-September) (Liu et al., 2008). Fingerman (1992) reported that there is no consensus among researchers concerning the chemical structure of androgenic hormone. King (1964) reported that the androgenic hormone in *Pachygrapsus crassipes* is proteinaceous in crustaceans.

CONCLUSIONS

The two distinct cell type in the androgenic gland of *P. plicatum* was based on the differences in the size, shape of nuclei and presence or absence of secretory vesicles. It is suggested that the structural differences exhibited between cell type 1 and type 2 in the present study may be due to different stages in the secretory activity. However, a comprehensive understanding of the structure of the AG in crabs is limited.

ACKNOWLEDGEMENT

Authors are thankful to the Principal and Head of the
Department Zoology, Holy Cross College (Autonomous) and Khadir Mohideen College for providing necessary facilities to carry out this work.

REFERENCES

